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Coherent axisymmetric structures in a turbulent jet are modelled as linear 
instability modes of the mean velocity profile, regarded as the profile of a, 
fictitious laminar inviscid flow. The usual multiple-scales expansion method is 
used in conjunction with a family of profiles consistent with similarity laws for 
the initial mixing region and approximating the profiles measured by Crow & 
Champagne (1971), Moore (1977) and other investigators, to deal with the effects 
of flow divergence. The downstream growth and approach to peak amplitude of 
axisymmetric wave modes with prescribed real frequency is calculated numeric- 
ally, and comparisons are made with various sets of experimental data. Excellent 
agreement is found with the wavelength measurements of Crow & Champagne. 
Quantities such as the amplitude gain which depend on cumulative effects are 
less well predicted, though the agreement is still quite tolerable in view of the 
facts that this simple linear model of slowly diverging flow is being applied far 
outside its range of strict validity and that many of the published measurements 
are significantly contaminated by nonlinear effects. The predictions show that 
substantial variations are to be expected in such quantities as the phase speed 
and growth rate, according to the flow signal (velocity, pressure, etc.) measured, 
and that these variations depend not only on the axial measurement location but 
also on the cross-stream position. Trends of this kind help to explain differences 
in, for example, the preferred Strouhal number found by investigators using hot 
wires or pressure probes on the centre-line, in the mixing layer or in the near field. 

1. Introduction 
Turbulence research has advanced rapidly in the last decade with the wide- 

spread recognition of orderly large-scale structure in many kinds of turbulent 
shear flow. Largely because of the jet-noise problem, turbulent jets at Reynolds 
numbers of lo4 and beyond have been subjected to the most intensive study, and 
some measure of agreement seems to have been reached among investigators on 
the general properties of the coherent motions. A number of papers deserve 
specific mention in any brief description of previous work. Molb-Christensen 
(1967) measured the near-field pressure fluctuations, and found that they come 
in quite well defined packets, the packets having a similar structure and being 
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random only with respect to the place and time of their origin. Ronneberger 
(1967) used a loudspeaker in the jet-pipe to force a jet to undergo a controlled 
uniform periodic fluctuation a t  the nozzle. He measured the amplitude of the 
backscattered pressure signal in the pipe a t  various flow speeds and frequencies, 
and found that the reflexion coefficient rose above unity in some circumstances, 
reaching a peak a t  combinations of the Mach number Uo/ao and Helmholtz 
number wD/ao which give the Strouhal number St = oD/2nUo a value around 0.3. 
At this condition, particularly intense vortex shedding took place from the 
nozzle. Ronneberger did not, however, measure the field outside the jet-pipe. 
That was done in the well-known work of Crow & Champagne (1971), who 
measured the turbulent velocity field by hot-wire anemometry, and by Crow 
(1972), who measured the distant noise field. Crow & Champagne’s approach, 
in which the latent structure is deliberately raised above the random background 
by coherent forcing, has been recently followed by Chan ( 1 9 7 4 ~ 4 ,  who measured 
pressure fluctuations a t  various axial and radial locations. Other workers have 
preferred to study the orderly structure without external forcing, relying on 
either narrow-band cross-correlations (Lau, Fuchs & Fisher 1972; Fuchs 1972) 
or ‘ eduction’ techniques to filter out the quasi-deterministic motions. Much 
recent experimental and theoretical work on orderly structure in a variety of 
turbulent flows was described by the contributors to the 1974 Southampton 
Colloquium on Coherent Structures, and summarized by Davies & Yule (1975). 

Crow & Champagne showed that a ‘small’ level (typically 1 % in their experi- 
ments) of coherent periodic forcing a t  the exit plane excites axisymmetric wave 
modes which ‘phase-lock’ the initial six diameters or so of the jet, and bind 
almost all of the turbulent energy into the purely periodic motion. For a given 
forcing level at the exit there is a ‘preferred mode’ which suffers the greatest 
total amplification (by a factor of about 18 on the centre-line axial velocity 
field), and in the Crow-Champagne experiments that mode was shown to have 
Strouhal number 0.3, phase speed 0.71U0 and wavelength h = 2.380,  reaching 
its peak level at 5 . 5 0  from the nozzle. These figures were all taken from measure- 
ments of the axial fluctuation velocity on the centre-line. If the exit-plane forcing 
level exceeds 1 % or so, the fundamental mode behaviour is strongly controlled 
by nonlinearity, though only a single (second) harmonic is measurably excited. 
The nonlinearity does, however, introduce a saturation effect whereby the 
fundamental velocity amplitude can never exceed 20 yo of the exit velocity Uo 
anywhere, whatever the forcing amplitude at the nozzle. 

Other workers have found somewhat different values for these quantities; 
for example, Fuchs (1972) gives the preferred Strouhal number as 0.5, while 
Lau et al. (1972) find i t  to be 0.6. These discrepancies are to some extent cleared 
up by the work of Chan (1974a). His values based on centre-line pressure flue- 
tuations agree well with those of Crow & Champagne, based on centre-line 
velocity fluctuations, but values derived from pressure fluctuations in the mixing 
region and the near field show substantial deviations from each other and from 
the centre-line values. This is an important point - that growth rates and wave- 
lengths depend significantly on the radial, as well as the axial, location at which 
they are measured - and we shall return to it later. 
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Another cause of discrepancies lies in the fact that nonlinear effects are actually 
significant a t  much lower forcing levels than were used by Crow & Champagne. 
Moore (1977) has carried out a comprehensive study of jet response to forcing, 
and has found that nonlinear effects are detectable at forcing levels as low as 
0.02 yo of the exit velocity. This means that the factor of 18 quoted by Crow & 
Champagne for the peak amplification of the preferred mode must be an under- 
estimate, suffering from the saturation effect, and a peak amplification in excess 
of this value would be expected at really small forcing levels. In  fact Moore 
found that, for the centre-line axial velocity fluctuation, the amplification a t  
Strouhal numbers around 0.5 rises from a factor around 18 to a factor above 60  
as the forcing level falls from the Crow & Champagne value of about 1% to less 
than one tenth of this value. These figures relate to the narrow-band filtered 
signals. Further evidence of the presence of significant nonlinearity comes from 
measurements by Moore (1977) and Bechert & Pfizenmaier (1975) showing an 
increase in the broad-band signal (of both the pressure and the velocity fluctuations 
within the jet and of the far-field sound pressure) a t  exit forcing levels greater 
than, say, 0.1 yo. In  both those sets of experiments, several harmonics of the 
fundamental forcing tone were still measurable above the broad-band noise, 
with levels decreasing by about 15 dB from one harmonic to the next (so that 
as far as harmonic generation is concerned the process seems to be only weakly 
nonlinear). 

Turning to a theoretical framework for these results i t  is natural to attempt an 
explanation in terms of the instability modes of the mean velocity profile, on 
the basis that the turbulence establishes an equivalent laminar flow profile as 
far as large-scale modes are concerned. (Fine-scale mixing-layer turbulence may 
also act as an eddy viscosity (Crow 1968) though that is an aspect yet to be 
treated properly, and we ignore it here.) Crow & Champagne laid stress on non- 
linear instability mechanisms, describing qualitatively how a preferred mode 
might arise from a combination of nonlinearity and dispersion for the modes on 
a ' top-hat ' jet. While there is no doubt that nonlinear mechanisms are dominant 
at  exit-plane forcing levels of 1 % and above, we restrict ourselves to much lower 
forcing levels, which in any case are probably more representative of jet engine 
tailpipe conditions, and argue that a reasonable description of the wave modes 
should be possible on linear theory. That view is supported by the work of 
Michalke (1971), who took the mean velocity profile measured by Crow & 
Champagne two diameters from the nozzle, worked out the phase speed and 
amplification rates for spatially growing waves for this profile (as if it were the 
profile of a strictly parallel inviscid flow), and showed that the results agreed 
well with the Crow & Champagne measurements around x = 20 .  In  particular, 
Michalke showed that the finite momentum thickness of the profile leads to the 
existence of a most rapidly amplified mode which a t  x = 2 0  has a Strouhal 
number close to 0.3. The same conclusion is reached in the recent theoretical 
and experimental study by Mattingly & Chang (1974). 

Quasi-parallel flow theory is, however, unable to properly predict variation 
of a mode characteristic with radial position, nor, for that matter, with axial 
position, for it will be shown in 2 that the characteristics of a mean flow slowly 
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changing in the axial direction are not identical with those of the parallel flow 
coincident with the local flow at each station. Thus the streamwise location at 
which the peak signal occurs does not in general coincide with the location at which 
the locally parallel flow sustains a neutral wave (at any particular Strouhal 
number). 

An obvious step to take to overcome these difficulties is to incorporate the 
effect of axial variation of the mean flow into the analysis. A number of workers 
(e.g. Liu 1974; Morris 1971; KO, Kubota & Lees 1970; Chan 19743) have done 
this using integral formulations involving, essentially, an energy equation with 
turbulent dissipation, and a ‘shape assumption’ on the mode form, to get an 
equation for the amplitude variation with x. A (theoretically) more satisfactory 
method for slowly varying flows has recently been given by several authors. 
Bouthier (1972) and Gaster (1974) have examined the laminar boundary layer, 
Weissman & Eagles (1976) the flow in a slowly diverging channel and Karamcheti 
(1973, private communication) the plane shear layer of tanh-profile with thick- 
ness proportional to x. These treatments all involve a WKB or ‘ slowly varying ’ 
type of approximation which is readily formalized by a ‘ multiple-scales ’ 
argument. 

The purpose of this paper is to apply the ‘slowly varying’ method to the 
evolution of axisymmetric disturbances on the initial part of a circular jet, 
using a form for the mean velocity which reasonably approximates the Crow & 
Champagne type of family of profiles. We aim to show how theory and experi- 
ment are in good general agreement as to the variation of phase speed and 
amplification rate with Strouhal number and axial and radial location, and as 
to the total amplification of the wave modes and the axial positions a t  which the 
peak amplitudes occur. We ignore interaction between the forced wave modes 
and mixing-layer turbulence. The conditions for the validity of Crow’s (1968) 
theory of the viscoelastic resistance offered by fine-scale turbulence to weak 
large-scale straining seem to be met by this interaction, but it is not a straight- 
forward matter to apply that theory in the present context, and neither is it  
yet clear that the attempt would be worthwhile. The problem is then just one 
of the instability of a slowly varying fictitious inviscid flow. This may imply that 
only the growth of waves can be followed; for decaying modes there may not 
exist any continuous solution to the inviscid equations of parallel flow (Betchov 
& Criminale 1967, p. 80), and that might be true for diverging flow as well. 

Finally, we confine attention to modes with prescribed purely real frequency. 
In  the parallel flow context these modes would suffer exponential spatial growth, 
a fact which, coupled with the elliptic nature of the differential equations, has 
led many workers to doubt the self-consistency of spatial instability theory. If 
allowance is made for the spread of the velocity profile, however, these doubts 
seem to be unfounded. The region of apparent spatial growth is bounded, and the 
exponentially diverging mode can be regarded as merely an inner solution 
which can be matched to an outer solution which attains a bounded amplitude 
everywhere consistent with linearity, or so, a t  any rate, it appears in our problem. 
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2. Stability analysis for diverging jet flow 
Take cylindrical co-ordinates (x , r ,O)  in which the mean stream function is 

@(x, r )  and the stream function of axisymmetric disturbances is $I(%, r ,  t ) .  
$(x,  r )  is regarded as prescribed, for example from measurements or from some 
similarity hypothesis about the mean jet flow. The linearized equation for $' is 

- 

with the definitions u, = r-la$/ar and up = - r-la$/ax for the velocity compo- 
nents, and the notation 

In the usual parallel flow approximation, (2.1) reduces to 

with (7)  = r--la?(r)/ar and g2 = az/ar2-r-la/ar. This has the solution 

$'(x, r, t )  = $(r )  exp i ( a x  - at), (2.3) 
provided $ satisfies the inviscid axisymmetric Orr-Sommerfeld (or Rayleigh) 
equation 

(2.4) I - q a , u ) $  = 0, 
3 = (U(r) -u /a)  ( P - - & ) - ( @ U ) .  

Now our form (2.30) for gives a/Uo = 1 + O(e-l/') as r+O, and hence, near 
r = 0, 

( 9 - - a 2 ) $  = 0, 

with a conveniently normalized solution, finite at r = 0, 

Likewise, if V vanishes rapidly at infinity we have 

as r + co, for Re a > 0 , I  and K being the usual symbols for the modified Bessel 
functions of the first and second kinds. The constant C is generally arbitrary 
but has a definite, though unknown, value for a given normalization such as 
(2.5). Conditions (2.5) and (2.6) and the differential equation (2.4) define the 
spectrum of spatial eigenvalues a(w) for each real frequency u. 

The adjoint eigenfunction 6 and the operator 2 adjoint to 9 are defined by 
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with the requirement that 6 be finite a t  r = 0 and small as r+ 03, these implying 
(again with a convenient normalization) 

for some definite 6. Now let x and 2 be any two functions which behave in the 
same way as the eigenfunctions q5 and 4 (respectively), both as r+O and as 
r + 03. Then i t  is easy to show that 

Reverting now to (2.1), suppose that the mean profile is slowly varying with 
axial distance x ,  i.e. that 

- 
@ = $(r ,X)  where X = ex (2.10) 

is a slow variable, and 8 is a small parameter which indicates the slowness of the 
jet spreading. Introduce a strained fast variable 

7 = g(X)/e,  (2.11) 

where the function g is to be found under the constraint g ( X )  = O ( X )  as X -+ 0. 
The idea is that the strained co-ordinate y should play the same role in the slowly 
diverging flow as x does in strictly parallel flow, i.e. the fast-variable dependence 
should be exponential, $‘ - expiy, the remaining space dependence being 
taken up in the form of ‘amplitude functions’ of the slow variable X. 

With $ = g ( r ,  X )  and $’ = v ( r ,  y, X ,  t ) ,  equation (2.1) takes the form 

Assume an expansion 

v = exp ( - i 4  (fOC., 7, X )  + &(r, 7, X )  + - .> 

fo(r, 7, X) = exp (irl)fo(r, X )  
and try a modal solution 

a t  leading order, to get 

(D(r ,X)-w/g’ (X))  ( 9 2 - g ’ 2 ( X ) ) f o ( r , X ) - ( 9 2 u ) f o ( r , X )  = 0. (2.13) 

This is the local Orr-Sommerfeld equation for the equivalent parallel flow prob- 
lem involving the mean velocity profile at station X .  Let a ( X )  and $(r, X) denote 
the eigenvalue wavenumber and eigenfunction [with 
say that of (2.5)]. Then the solution of (2.13) is 

a definite normalization, 

(2.14) 
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(2.15) 

(2.16) 

The expression (2.16) displays a typical WKB form, in which the usual fast- 
variable behaviour exp (im) is uniformized to 

exp ( iSXadx) ,  

while the slow variation is taken up in the 'amplitude' A ( X )  and in the eigen- 
function +(r, X). Note, however, that amplitude and phase information is 
contained in each of the three terms in (2.15), and is transferred from one term 
to another by different choice of the normalization imposed on 9. In  particular, 
therefore, the effective growth rate and phase speed of a disturbance at any given 
station X are not identical with the growth rate and phase speed of the distur- 
bance with respect to the local parallel flow at X. Further, the effective growth 
rate and phase speed are different for different choices of flow variable (pressure, 
velocity, energy density, etc.), and even for a given variable depend upon the 
cross-stream location at which they are evaluated. Differences of this kind have 
been observed in experiments (Chan 1974a), and will be discussed again later. 

An equation for A ( X )  follows, in the usual multiple-scales manner, from 
consideration of (2.12) at O(E),  which gives the following inhomogeneous equation 
for fl: 

da ' ( a  - ) a  a$ a [ i  ] 
d X  r aX 

-g2$ -+ - r -  - (@-a2)  . (2.18) 9 = (3Da-w)---  
ar ax ar r2 

Since the terms on the right of (2.17) contain the Orr-Sommerfeld eigensolution 
itself, we must expect fl to contain the familiar kind of secular terms, and so we 
anticipate a solution of the form 

fi@, 7, X )  = YT exp (%-)fOP, X )  + exp (i7) w - 9  XI. (2.19) 

This leads to an inhomogeneous Orr-Sommerfeld problem for h(r, X ) ;  

~o~-Y(o~(x), 0) h(r, X) = safo/ax + 9fo +r*fo, 
with # = - 2wa2 + ( P D )  a - D a P  + 3 Da3, 

and (2.20) has a solution for h which is finite a t  r = 0 and vanishes as T+CO if 
and only if 

(2.20) 

(2.21) 

26-2 
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where $(r, X )  is the adjoint eigensolution for the local parallel flow a t  station X .  
Provided 

f u m 5 w f o d l .  $. 0 

this determines y uniquely, and leads through (2 .19)  to a correction function ~ f i  
which is O ( q )  relative tof,. This, however, is unacceptable, but not for the 
usual reason that it is a secular correction which becomes unbounded for suffi- 
ciently large 7, for 7 does not necessarily become large for any value of x. The 
reason for rejecting a term O ( q )  is that €7 is in fact g ( X ) ,  and therefore the 
correction is generally O(1) rather than o(1) once X is as large as O(1). The 
required vanishing of y then leads to the equation (cf. Bouthier 1972) 

m(X) dA/dX + n ( X )  A = 0, (2 .22)  

where 
( 2 . 2 3 ~ )  

(2 .233)  

Thus the stream function is determined to O( I) by the expression, supposedly 
uniformly valid in x, 

(2.24) 

A similar expression for the pressure perturbation in the wave mode may be 
obtained directly from the momentum equation, namely 

where 

(2.25) 

(2 .26)  

The parameter E has now served its purpose in enabling fast and slow variations 
to be formally identified, but in this inviscid problem it is somewhat artificial. 
We shall therefore dispense with the distinction between x and X, writing 
A @ ) ,  m(z),  etc., for the quantities hitherto written as A(X), m(X) ,  etc. Then the 
O( I) solution for the stream function is 

(2.27) 

From this solution a local wavenumber Z can be defined for any flow variable Q 
(more precisely for any Q which is a linear functional of $'), for any axial station 
x and for any radial location r (and, of course, for each real frequency w )  by 

(2.28) 

This wavenumber has real and imaginary parts ER and Ez, which may be inter- 
preted in terms of the local phase speed (or wavelength) and local spatial growth 
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rate for the quantity Q in the neighbourhood of (x, r ) ,  and the notation emphasizes 
the fact that E is not just a function of x, but also of r and of the flow quantity 
under consideration. Thus, for example, the value of a! for the axial velocity 
component u, is 

(2.29) 

in which a(x)  is the contribution from the local parallel flow a t  x, +in(x)/m(x) 
is a function of x alone, present in all linear functionals of $’, while the first 
term depends on r as well as x, and varies with the choice of flow variable. 
This makes it very clear that mere consideration of the variation of a with x is 
not necessarily of any value whatever, if one is really interested in the corres- 
pondence between theory and measured wavelengths and growth rates [the 
measured quantities always corresponding to those in (2.29)]. For all that is 
guaranteed is that E and a both tend to the same constant a. as c-+ 0, and this 
does not preclude just as much of the difference between OI and a. from arising 
out of the first and last terms of (2.29) as out of the local wavenumber a(x). 
And then again, just how much comes from the first or last term in (2.29) depends 
entirely on the normalization adopted for 4. Recent work by Chan ( 1 9 7 4 ~ )  is 
open to criticism on these grounds; his QD and figures 10, 15, 16 and 17 all 
compare experimental results with theoretical predictions involving only the 
a(x) term in (2.29) without recognizing the possible importance of the other 
terms in (2.29). Although this invalidates the theoretical side of the work, 
Chan’s paper is nonetheless valuable in providing clear experimental evidence 
for the variation of growth rate with the flow quantity and with radial location 
(though his theory ( 1 9 7 4 ~ )  of course precludes both of these possibilities). 

In  the next section we present computed values for various quantities derived 
from (2.24) and (2.25). Some limited comparison will be made with the experi- 
mental data of Crow & Champagne (1971) and Moore (1977). In  most other 
published data there are various unknowns (such as distance from the nozzle, 
for example, in many of the figures of Chan 1974a) which make further compari- 
son difficult, while there is often in addition the contaminating effect of non- 
linearity, mentioned later. 

We use a form for the mean velocity which has been used to good effect by 
Michalke (1971) in the parallel flow approximation. Michalke takes 

- 
U ( r )  = .o(l+tanh[b(;-$)]], 2 (2.30) 

where the parameter b = D/86, 6 is a momentum thickness, R is the jet radius, 
defined by U(R) = BU,,, and D = 2R is the jet diameter. According to Michalke 
this form gives reasonable agreement with the profile measured by Crow & 
Champagne (1971) around the station x = 2 0 ,  where exponential growth 
appeared to occur, provided b takes the value $+. The form (2.30) can be simply 
and appropriately generalized to describe the mean axial velocity throughout, 
say, the first six diameters from the nozzle. For, in that region, well-known 
similarity rules (see, for example, Tennekes & Lumley 1972, p. 134) state that 
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velocities are invariant with x, while the turbulence length scales increase 
linearly with x. Thus we take 

D 
(2.31) 

for any divergence rate y and virtual origin xo such that 

1 +xo/2D w 1/25y (2.32) 

in order to maintain consistency with Michalke at x = 2 0 .  This form simulates 
the plug flow in the potential core very well, since -+ V, exponentially as r -+ 0. 
From (2.31) the mean stream function and its derivatives are found as required by 
numerical operations. 

All of the calculations presented in $ 3  refer to the mean velocity profile for 

(2.33) which 

though we also considered the effect of slight variations in the divergence rate 
and virtual origin consistent with an equally acceptable representation of mean 
profiles measured by Crow & champagne and by Moore. For such point quantities 
as the phase speed or growth rate these slight variations had only a slight effect; 
the phase speed seemed particularly insensitive to them. Integrated quantities 
like the amplitude gain varied considerably from one profile to another if the 
gain was reckoned in each case relative to a fixed axial location, x/D = 1 say. 
These variations were much reduced if the origin of the gain was taken a 
fixed distance from the virtual origin of each family of velocity profiles. Even 
then, however, the remaining variation, arising from differences in spreading 
rate between the profiles, was considerably larger in the case of the integrated 
gain functions than in the case of point functions. 

We confine attention, somewhat arbitrarily, to the region x 2 D. For smaller 
values of x (and arguably even for larger values of x up to perhaps a wavelength 
of the instability mode) the spatial inhomogeneity caused by the presence of 
the jet-pipe must be dominant (cf. Orszag & Crow 1970; Crighton 1972). This is 
borne out by many of the figures given by Crow & Champagne, which show a 
rapidly distorted fluctuation profile in the first diameter, followed by a nearly 
exponential growth between xlD = 1 and x/D = 3, say, beyond which that 
growth is quickly arrested by the divergence of the mixing layer. We hope in a 
future paper to return to the issue of the tailpipe effect. This is a strongly fre- 
quency-dependent effect which must greatly influence the total gain (relative to 
the nozzle rather than to x/D = I )  experienced by a wave; were i t  not for the 
inhibiting effect of the tailpipe a high frequency mode would suffer enormous 
gains as i t  was rapidly amplified on the very thin shear layer close to the nozzle. 

Finally we question whether the ‘slowly varying’ approximation is likely to 
be valid here. If the momentum thickness is regarded as the significant dynamical 
variable then the rate of spread of the jet in relation to a disturbance of wave- 
length O(D)  is characterized by 

6 = &(x+$D) 

E N -( d ”) N -3- 
d(x/D) % loo’  
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FIGURE 1. Wavelength as a function of Strouhal number. -, present theory, diverging 
flow, centre-line axial velocity at x/D = 2 ;  - - -, theory for parallel flow with the same 
mean profile at x / D  = 2 as above; 0, measurements (centre-line axial velocity) of Crow 
& Champagne (1971, table 4). 

which is perhaps small enough to justify (2.27), though an E of 20-25 yo would 
be indicated by the use of the nominal mixing-layer thickness as the important 
parameter, that thickness becoming comparable with the diameter D around the 
end of the potential core, x N 5 0 .  

3. Computed results and comparison with experiment 
Figure 1 shows the calculated variation of wavelength with Strouhal number. 

The wavelength is taken with reference to the axial velocity fluctuation on the 
centre-line, and is defined by 

(3.1) h = 2n-/Re Z(x = 2 0 ,  r = 0 I uz). 
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1.0 , I I I I I I I 

0 1 2 3 4 

40 
FIGURE 2.  Local phase speed E/Uo as a function of axial distance x/D. The frequency 
parameter u = wR/U, has the value 0.9, i.e. St = 0.285. (a) Phase speed for centre-line 
axial velocity. ( 6 )  Phase speed for centre-line pressure. (c )  Phase speed for shear-layer 
pressure (T = R).  (d )  Phase speed for near-field pressure (T = D) .  

The figure shows also the wavelength for a strictly parallel flow with the same 
profile at x = 2 0 ;  these values of the wavelength are identical to those calcu- 
lated by Michalke (1971). It is evident that the results for the strictly parallel 
flow agree well with those for the diverging flow, especially, as might be expected, 
at the higher Strouhal numbers. Either set of results agrees remarkably well 
with the measurements of Crow & Champagne (1971, table 4). This explains 
Michalke’s success in predicting the Crow & Champagne wavelengths from 
parallel flow theory. As already noted, the wavelength is totally insensitive to 
small changes in the family of profiles. 

Figure 2 shows the variation in the phase speed 

F = w/Re Z(x,  r I I, or zc,) (3 .2 )  

with axial position at a fixed value, 0.9, of the frequency parameter IT = wR/U,. 
The different curves refer to calculations of the centre-line axial velocity, centre- 
line pressure, pressure in the middle (r = R) of the mixing layer and the pressure 
a t  r = D in the near field. Again, all the calculations here refer to (2 .33 ) ;  only 
small differences arose in the phase speeds for small changes of profile. We have 
no directly comparable experimental data for this case. However, the trends 
shown in figure 2 are consistent with figures 4 and 5 of Chan (1974a), in that 
pressure measurements give lower phase speeds than velocity measurements 
and in that the phase speeds derived from shear-layer and near-field measure- 
ments are lower than those on the centre-line. Further, the decrease in a/U, to 
a minimum of about 0-65 around x = 2 0  (at this particular value CT = 0.9) is in 
good general agreement with data given by Moore (1977), though it is not clear 
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FIGURE 3. Gain in centre-line pressure fluctuation re xID = 1. The frequency parameter 
v = oR/U,  = nSt has the value shown against each curve. 

whether his data in this instance refer to velocity or to pressure measurements. 
We emphasize here again that any attempt to discuss the variation of C with x 
purely from an examination of the local parallel flow stability problem is 
meaningless. 

Figure 3 shows the gain (rex/D = 1) of the centre-line pressure amplitude 
with x /D  for various values of cr. Michalke (1971) has shown that the effect of a 
finite momentum thickness is, in parallel flow theory, to single out a most 
rapidly amplified mode at, say, x = 2 0 .  Here we see that the effect of shear- 
Iayer divergence is to single out a mode which suffers the greatest total gain 
(re x /D  = 1). For the profile (2.33) that gain is equivalent to amplification of the 
pressure amplitude by a factor of about 8, and is attained for cr M 1.2 a t  x 2 4 0 .  
Modes with different values of u are also predicted to achieve a finite total gain, 
that being achieved a t  smaller x /D  the higher the value of cr. It is plausible that, 
if the effect of the nozzle and tailpipe were included and the gain reckoned rela- 
tive to the nozzle exit, this would discriminate against both higher and lower 
frequencies and still lead to a preferred value of c between 0.9 and 1.5. In  any 
case it is clear that the emergence of a ‘preferred mode’ achieving the greatest 
total gain is the outcome not just of the linear parallel flow amplification con- 
sidered by Michalke but also of the effects caused by flow divergence and the 
jet-pipe (and also, no doubt, nonlinearity at the higher forcing levels). Although 
one might expect eddy damping to be an important mechanism for limiting the 
total gain, it does not appear from figure 3 that that is actually the case. The net 
gain by a factor of 8 relative to x/D = 1 is very close to that measured by Moore 
(1977), as is the location (x = 390-40) a t  which the pressure maximum is 
attained. On the other hand the minimum Mach number in Moore’s experiments 
was 0.3, and the effect of compressibility on the gain is not known, so that all 
we can definitely conclude is that the combined effects of compressibility and 
eddy damping are small. 
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X l D  

FIGURE 4. Gain in centre-line axid velocity fluctuation re x / D  = 1. - , calculated 
values; - - - , measurements of Crow & Champagne (1971, figure 24). The frequency 
parameter c = wR/U, = ?rSt hrts the value shown against each curve. 

Figure 4 shows the gain curves for the centre-line axial velocity fluctuation. 
The velocity gain greatly exceeds the pressure gain, by a factor depending on 
the value of LT and on details of the profile, but typically around 4, and the peak 
gain for the pressure is reached much earlier than the peak in velocity. Again, 
these trends are fully consistent with Moore’s results, though we encountered 
difficulties in the computation which made i t  impossible to follow the velocity 
to peak amplitude, and we therefore can give no reliable estimate of the total 
velocity gain for values of LT greater than 0.6. The velocity gain measured by 
Crow & Champagne (1971) is also shown on figure 4. As noted before, Moore 
shows that none of their forcing levels was low enough to ensure linearity of the 
jet response, so it is not surprising that our prediction is well in excess of their 
measurements, and much closer to those of Moore. 

It was shown above that the phase speed or wavelength could be adequately 
calculated at any station from the locally parallel flow. That is precisely true, 
within the ‘slowly varying’ approximation, of the ratio of pressure to axial 
velocity on the centre-line, which according to (2.24)-(2.26) is given by 

(3.3) 
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FIGURE 5. Phase angle in degrees by which the pressure fluctuation leads the axial velocity 
fluctuation on the centre-line. - , calculated values; - - -, measurements of Moore 
(1976). The frequency parameter u = oR/U,  has the values indicated. 

and so is determined by a(z) alone. In  particular the phase angle by which the 
pressure leads the velocity is found to vary with x in the manner shown in figure 
5, and is there compared with direct measurements of this angle by Moore (1977) 
for G = 1.5. Calculated and measured values both tend to 180" with increasing 
.ID, but the approach is from different directions. Moore also noted that this 
unsatisfactory behaviour follows from calculations based on Chan's work 
(1974~-c) .  It may be appropriate, however, to regard the discrepancy as a 
measure of the importance of eddy damping. 

4. Discussion 
The aim of this work has been to incorporate the effect of shear-layer divergence 

into jet stability theory in a simple but rational manner. Integral formulations 
offer the possibility of dealing with more rapid growth than can be treated by 
multiple-scales expansions; they also offer the possibility of modelling the 
processes of energy transfer between the mean flow, the instability wave and 
the fine-scale turbulence. A number of specific assumptions need, however, to 
be made before the integral energy method leads to a closed set of equations, 
and i t  becomes difficult to identify general mechanisms and trends on the basis 
of one particular set of assumptions. We have, accordingly, restricted ourselves 
to one issue, and have shown that simple allowance for slow axial development 
of the mean jet profile leads (with the exception of the phase-angle variation of 
figure 5) a t  worst to general trends in agreement with those found in several 
independent sets of measurements and at best to excellent numerical agreement 
for the wavelength, phase speed and pressure gain. Further, these calculations 
show clearly that the figures apparently regarded as universal by Crow & 
Champagne are in some cases (the gain, for example) far from universal, and 
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in fact sensitive to profile details, and that significant differences may exist - 
even for the same profile - between quantities derived from pressure and velocity 
measurements (and depending, to a lesser extent, on the transverse location of 
measurement). The fact just is that the modes on a diverging jet are appreciably 
distorted, and parallel flow ideas and terminology must not be carried over too 
loosely to the interpretation of actual measurements. 

The calculations point to the need for more work in several areas. First, they 
draw attention to the fact that the tailpipe has an important effect in the early 
stages, and this is a frequency-dependent effect which affects the selection of a 
preferred mode and the net gain relative to the nozzle exit. Second, the predicted 
gains are, as expected, a little too large and are attained a little too far down- 
stream, though in dB terms the errors are not great and in all respects the quali- 
tative behaviour is correctly reproduced here. Hopefully the difference might 
be made up by the turbulent eddy viscosity, as described by Crow (1968). Third, 
Michalke's (1971) calculations indicate that spiral modes with azimuthal wave- 
number n = & 1 should be amplified a t  about the same rate as the axisymmetric 
modes on a parallel flow profile like that of (2.30), and, moreover, that on parallel 
flow theory the modes with n = _+ 1 should continue to be amplified on the bell- 
shaped sort of profile which is found in the fully developed jet (x 2 SO), whereas 
there the axisymmetric modes should only decay. These indications now have 
experimental support from Moore (1977) and Chan & Templin (1974), so that 
there is a need to extend the present work to the n = k 1 modes, for which the 
governing equations cannot be written as a single equation for a stream function. 
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